11 resultados para Neurogenesis

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Chez les mammifères, la naissance de nouveaux neurones se poursuit à l’âge adulte dans deux régions du cerveau: 1) l’hippocampe et 2) la zone sous-ventriculaire du prosencéphale. La neurogenèse adulte n’est pas un processus stable et peut être affectée par divers facteurs tels que l’âge et la maladie. De plus, les modifications de la neurogenèse peuvent être à l’origine des maladies de sorte que la régulation ainsi que le rétablissement de la neurogenèse adulte doivent être considérés comme d’importants objectifs thérapeutiques. Chez la souris saine ou malade, la neurogenèse hippocampale peut être fortement régulée par l’enrichissement environnemental ainsi que par l’activité physique. Cependant, lors même que l’activité physique et l’enrichissement environnemental pourraient contribuer au traitement de certaines maladies, très peu d’études porte sur les mécanismes moléculaires et physiologiques responsables des changements qui sont en lien avec ces stimuli. Objectifs et hypothèses: Les principaux objectifs de cette étude sont de caractériser les effets de stimuli externes sur la neurogenèse et, par le fait même, d’élucider les mécanismes sous-jacents aux changements observés. En utilisant le modèle d’activité physique volontaire sur roue, cette étude teste les deux hypothèses suivantes: tout d’abord 1) qu’une période prolongée d’activité physique peut influencer la neurogenèse adulte dans le prosencéphale et l’hippocampe, et 2) que l’activité volontaire sur roue peut favoriser la neurogenèse à travers des stimuli dépendants ou indépendants de la course. Méthodes: Afin de valider la première hypothèse, nous avons utilisé un paradigme incluant une activité physique volontaire prolongée sur une durée de six semaines, ainsi que des analyses immunohistochimiques permettant de caractériser l’activité de précurseurs neuronaux dans la zone sous-ventriculaire et l’hippocampe. Ensuite, pour valider la seconde hypothèse, nous avons utlisé une version modifiée du paradigme ci-dessous, en plaçant les animaux (souris) soit dans des cages traditionnelles, soit dans des cages munies d’une roue bloquée soit dans des cages munies d’une roue fonctionnelle. Résultats: En accord avec la première hypothèse, l’activité physique prolongée volontaire a augmenté la prolifération des précurseurs neuronaux ainsi que la neurogenèse dans le gyrus dentelé de l’hippocampe comparativement aux animaux témoins, confirmant les résultats d’études antérieures. Par ailleurs, dans ce paradigme, nous avons aussi observé de la prolifération acrue au sein de la zone sous-ventriculaire du prosencéphale. De plus, en accord avec la seconde hypothèse, les souris placées dans une cage à roue bloquée ont montré une augmentation de la prolifération des précurseurs neuronaux dans l’hippocampe comparable à celle observée chez les souris ayant accès à une roue fonctionnelle (coureurs). Cependant, seuls les animaux coureurs ont présenté une augmentation de la neurogenèse hippocampale. Conclusions: Ces résultats nous ont permis de tirer deux conclusions nouvelles concernant les effets de l’activité physique (course) sur la neurogenèse. Premièrement, en plus de la prolifération et de la neurogenèse dans le gyrus dentelé de l’hippocampe, la prolifération dans la zone sous-ventriculaire du prosencéphale peut être augmentée par l’activité physique sur roue. Deuxièmement, l’environnement dans lequel l’activité physique a lieu contient différents stimuli qui peuvent influencer certains aspects de la neurogenèse hippocampale en l’absence d’activité physique sur roue (course).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La neurogenèse est présente, dans le cerveau adulte, dans la zone sous-ventriculaire (ZSV) encadrant les ventricules latéraux et dans le gyrus dentelé (GD) de l’hippocampe, permettant l’apprentissage, la mémoire et la fonction olfactive. Ces micro-environnements possèdent des signaux contrôlant l’auto-renouvellement des cellules souches neurales (CSN), leur prolifération, leur destin et leur différenciation. Or, lors du vieillissement, les capacités régénératives et homéostatiques et la neurogenèse déclinent. Les patients atteints de la maladie d’Alzheimer (MA), comme le modèle animal reproduisant cette maladie (3xTg-AD), montrent une accélération des phénotypes liés au vieillissement dont une diminution de la neurogenèse. Notre hypothèse est que la découverte des mécanismes affectant la neurogenèse, lors du vieillissement et de la MA, pourrait fournir de nouvelles cibles thérapeutiques pour prévenir le déclin cognitif. Les études sur l’âge d’apparition et les mécanismes altérant la neurogenèse dans la MA sont contrastées et nous ont guidé vers deux études. L’examen des changements dans les étapes de la neurogenèse lors du vieillissement et du développement de la neuropathologie. Nous avons étudié la ZSV, les bulbes olfactifs et le GD de souris femelles de 11 et 18 mois, et l’apparition des deux pathologies associées à la MA : les plaques amyloïdes et les enchevêtrements neurofibrillaires. Nous avons découvert que les souris 3xTg-AD possèdent moins de cellules en prolifération, de progéniteurs et de neuroblastes, induisant une diminution de l’intégration de nouvelles cellules dans le GD et les bulbes olfactifs. Notons que le taux de neurogenèse chez ces souris de 11 mois est similaire à celui des souris de phénotype sauvage de 18 mois, indiquant une accélération des changements liés au vieillissement dans la MA. Dans la ZSV, nous avons aussi démontré une accumulation de gouttelettes lipidiques, suggérant des changements dans l’organisation et le métabolisme de la niche. Enfin, nous avons démontré que le déficit de la neurogenèse apparait lors des premières étapes de la MA, avant l’apparition des plaques amyloïdes et des enchevêtrements neurofibrillaires. A l’examen des mécanismes inhibant la neurogenèse lors de la MA, nous voyons que chez des souris de 5 mois, le déficit de la neurogenèse dans la ZSV et le GD est corrélé avec l’accumulation de lipides, qui coïncide avec l’apparition du déclin cognitif. Nous avons aussi découvert que dans le cerveau humain de patients atteints de la MA et dans les 3xTg-AD, des gouttelettes lipidiques s’accumulaient dans les cellules épendymaires, représentant le principal soutien des CSN de la niche. Ces lipides sont des triglycérides enrichis en acide oléique qui proviennent de la niche et pas d’une défaillance du système périphérique. De plus, l’infusion locale d’acide oléique chez des souris de phénotype sauvage permet de reproduire l’accumulation de triglycérides dans les cellules épendymaires, comme dans la MA. Ces gouttelettes induisent un dérèglement de la voie de signalisation Akt-FoxO3 dans les CSN, menant à l’inhibition de leur activation in vitro et in vivo. Ces résultats permettent une meilleure compréhension de la régulation de la neurogenèse par le métabolisme lipidique. Nous avons démontré un nouveau mécanisme par lequel l’accumulation des lipides dans la ZSV induit une inhibition des capacités de prolifération et de régénération des CSN lors de la MA. Les travaux futurs permettront de comprendre comment et pourquoi le métabolisme lipidique du cerveau est altéré dans la MA, ce qui pourrait offrir de nouvelles voies thérapeutiques pour la prévention et la régénération.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Afin de mieux comprendre l’évolution des fonctions du récepteur EphA4 pendant le développement du système nerveux central (SNC), nous avons étudié sa localisation cellulaire et subcellulaire dans l’hippocampe du rat, d’abord chez l’adulte, puis pendant le développement postnatal, ainsi que ses rôles potentiels dans la genèse, la migration ou la maturation des cellules granulaires dans l’hippocampe adulte. Pour ce faire, nous avons utilisé la méthode d’immunocytochimie en microscopie photonique, électronique et confocale. En microscopie photonique, une forte immunoréactivité (peroxydase/DAB) pour EphA4 est observée aux jours 1 et 7 suivant la naissance (P1 et P7) dans les couches de corps cellulaires, avec un marquage notamment associé à la surface des corps cellulaires des cellules granulaires et pyramidales, ainsi que dans les couches de neuropile du gyrus dentelé et des secteurs CA3 et CA1. L’intensité du marquage diminue progressivement dans les couches de corps cellulaires, entre P7 et P14, pour devenir faible à P21 et chez l’adulte, tandis qu’elle persiste dans les couches de neuropile, sauf celles qui reçoivent des afférences du cortex entorhinal. En microscopie électronique, après marquage à la peroxydase/DAB, EphA4 décore toute la surface des cellules pyramidales et granulaires, du corps cellulaire jusqu’aux extrémités distales, entre P1 et P14, pour devenir confiné aux extrémités synaptiques, c’est-à-dire les terminaisons axonales et les épines dendritiques, à P21 et chez l’adulte. À la membrane plasmique des astrocytes, EphA4 est redistribué comme dans les neurones, marquant le corps cellulaire et ses prolongements proximaux à distaux, à P1 et P7, pour devenir restreint aux prolongements périsynaptiques distaux, à partir de P14. D’autre part, des axones en cours de myélinisation présentent souvent une forte immunoréactivité punctiforme à leur membrane plasmique, à P14 et P21. En outre, dans les neurones et les astrocytes, le réticulum endoplasmique, l’appareil de Golgi et les vésicules de transport, organelles impliquées dans la synthèse, la modification posttraductionnelle et le transport des protéines glycosylées, sont aussi marqués, et plus intensément chez les jeunes animaux. Enfin, EphA4 est aussi localisé dans le corps cellulaire et les dendrites des cellules granulaires générées chez l’adulte, au stade de maturation où elles expriment la doublecortine (DCX). De plus, des souris adultes knockouts pour EphA4 présentent des cellules granulaires DCX-positives ectopiques, c’est-à-dire positionnées en dehors de la zone sous-granulaire, ce qui suggère un rôle d’EphA4 dans la régulation de leur migration. Ces travaux révèlent ainsi une redistribution d’EphA4 dans les cellules neuronales et gliales en maturation, suivant les sites cellulaires où un remodelage morphologique s’effectue : les corps cellulaires lorsqu’ils s’organisent en couches, les prolongements dendritiques et axonaux pendant leur croissance, guidage et maturation, puis les épines dendritiques, les terminaisons axonales et les prolongements astrocytaires distaux associés aux synapses excitatrices, jusque chez l’adulte, où la formation de nouvelles synapses et le renforcement des connexions synaptiques existantes sont exercés. Ces localisations pourraient ainsi correspondre à différents rôles d’EphA4, par lesquels il contribuerait à la régulation des capacités plastiques du SNC, selon le stade développemental, la région, l’état de santé, ou l’expérience comportementale de l’animal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La neurogenèse persiste à l’âge adulte dans deux régions du système nerveux central (SNC) des mammifères : la zone sous-ventriculaire (SVZ) du cerveau antérieur et la zone sous-granulaire (SGZ) de l’hippocampe. Cette neurogenèse est possible grâce à la capacité de prolifération des cellules souches présentes dans les niches de la SVZ et la SGZ, mais en vieillissant, le cerveau subit une diminution dramatique du nombre de cellules souches neurales adultes (CSNa), une diminution de la prolifération cellulaire et une altération des niches de neurogenèse. Cependant, une importante question reste sans réponse : comment la perte tardive des CSNa est temporellement reliée aux changements de l’activité de prolifération et de la structure de la principale niche de neurogenèse (la SVZ)? Afin d’avoir un aperçu sur les événements initiaux, nous avons examiné les changements des CSNa et de leur niche dans la SVZ entre le jeune âge et l’âge moyen. La niche de la SVZ des souris d’âge moyen (12 mois) subit une réduction de l’expression des marqueurs de plusieurs sous-populations de précurseurs neuraux en comparaison avec les souris jeunes adultes (2 mois). Anatomiquement, cela est associé avec des anomalies cytologiques, incluant une atrophie générale de la SVZ, une perte de la couche de cellules sousépendymaires par endroit et l’accumulation de gouttelettes lipidiques de grande taille dans l’épendyme. Fonctionnellement, ces changements sont corrélés avec une diminution de l’activité de la SVZ et une réduction du nombre de nouveaux neurones arrivant aux bulbes olfactifs. Pour déterminer si les CSNa de la SVZ ont subi des changements visibles, nous avons évalué les paramètres clés des CSNa in vivo et in vitro. La culture cellulaire montre qu’un nombre équivalent de CSNa ayant la capacité de former des neurosphères peut être isolé du cerveau du jeune adulte et d’âge moyen. Cependant, à l’âge moyen, les précurseurs neuraux semblent moins sensibles aux facteurs de croissance durant leur différenciation in vitro. Les CSNa donnent des signes de latence in vivo puisque leur capacité d’incorporation et de rétention du BrdU diminue. Ensemble, ces données démontrent que, tôt dans le processus du vieillissement, les CSNa et leur niche dans la SVZ subissent des changements significatifs, et suggèrent que la perte de CSNa liée au vieillissement est secondaire à ces événements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les astrocytes sont des cellules gliales présentes dans le système nerveux central, qui exercent de nombreuses fonctions physiologiques essentielles et sont impliquées dans la réponse aux lésions et dans plusieurs pathologies du cerveau. Les astrocytes sont générés par les cellules de la glie radiale, les précurseurs communs de la plupart des cellules neuronales et gliales du cerveau, après le début de la production des neurones. Le passage de la neurogenèse à la gliogenèse est le résultat de mécanismes moléculaires complexes induits par des signaux intrinsèques et extrinsèques responsables du changement de propriété des précurseurs et de leur spécification. Le gène Pax6 code pour un facteur de transcription hautement conservé, impliqué dans plusieurs aspects du développement du système nerveux central, tels que la régionalisation et la neurogenèse. Il est exprimé à partir des stades les plus précoces dans les cellules neuroépithéliales (les cellules souches neurales) et dans la glie radiale, dérivant de la différenciation de ces cellules. L’objectif de cette étude est d’analyser le rôle de Pax6 dans la différenciation et dans le développement des astrocytes. À travers l’utilisation d’un modèle murin mutant nul pour Pax6, nous avons obtenu des résultats suggérant que la suppression de ce gène cause l'augmentation de la prolifération et de la capacité d'auto-renouvellement des cellules souches neurales embryonnaires. In vitro, les cellules mutantes prolifèrent de façon aberrante et sous-expriment les gènes p57Kip2, p16Ink4a, p19Arf et p21Cip1, qui inhibent la progression du le cycle cellulaire. De plus, Pax6 promeut la différenciation astrocytaire des cellules souches neurales embryonnaires et est requis pour la différenciation des astrocytes dans la moëlle épinière. Les mutants nuls pour Pax6 meurent après la naissance à cause de graves défauts développementaux dus aux fonctions essentielles de ce gène dans le développement embryonnaire de plusieurs organes. En utilisant un modèle murin conditionnel basé sur le système CRE/ loxP (hGFAP-CRE/ Pax6flox/flox) qui présente l’inactivation de Pax6 dans les cellules de la glie radiale, viable après la naissance, nous avons montré que Pax6 est impliqué dans la maturation et dans le développement post-natal des astrocytes. Le cortex cérébral des souris mutantes conditionnelles ne présente pas d’astrocytes matures à l’âge de 16 jours et une très faible quantité d’astrocytes immatures à l’âge de trois mois, suggérant que Pax6 promeut la différenciation et la maturation des astrocytes. De plus, Pax6 semble jouer un rôle même dans le processus de différenciation et de maturation de cellules gliales rétiniennes. L’étude des gènes et des mécanismes moléculaires impliqués dans la génération des astrocytes est crucial pour mieux comprendre le rôle physiologique et les altérations pathologiques des ces cellules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les vertébrés, du poisson à l'homme, possèdent un potentiel membranaire médié en partie par les ions chlorure (Cl-). L’une des premières formes d’activité neuronale lors du développement est la dépolarisation médiée par les ions chlorures extrudés par les canaux glycinergiques (GlyR) et GABAergiques. Cette dépolarisation est rendu possible grâce à l’expression retardée du co-transporteur d’ions chlorure et de potassium KCC2 lors du développement qui génère un gradient hyperpolarisant postnatalement chez les mammifères. Le rôle de cette dépolarisation précoce paradoxale durant le développement est inconnu. En injectant l’ARNm de KCC2 dans des embryons de poissons zébrés nouvellement fertilisé, nous avons devancé l’expression de ce co-transporteur rendant ainsi la glycine hyperpolarisante dans tous les neurones dès les premières phases du développement. Nous avons aussi ciblé le récepteur glycinergique directement en bloquant son activité et son expression à l’aide d’une drogue spécifique, la strychnine et d’un morpholino antisens (Knockdown). Dans les trois cas (KCC2, strychnine et GlyR KD), les perturbations de l’activité neuronale ont provoqués des erreurs dans la neurogenèse, en particulier une diminution du nombre d’interneurones sans avoir d’effets sur les motoneurones et les neurones sensoriels. De plus, en bloquant les canaux calciques activés à bas voltage dans le développement avec la drogue nifedipine, il y a des erreurs dans la neurogénèse semblables à celles remarquées dans les trois conditions précédentes. Nous concluons que la dépolarisation précoce par la glycine permet l’entrée du calcium et l’activation de la neurogénèse chez les interneurones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le développement du système nerveux central (SNC) chez les vertébrés est un processus d'une extrême complexité qui nécessite une orchestration moléculaire très précise. Certains gènes exprimés très tôt lors du développement embryonnaire sont d'une importance capitale pour la formation du SNC. Parmi ces gènes, on retrouve le facteur de transcription à Lim homéodomaine Lhx2. Les embryons de souris mutants pour Lhx2 (Lhx2-/-) souffre d'une hypoplasie du cortex cérébral, sont anophtalmiques et ont un foie de volume réduit. Ces embryons mutants meurent in utero au jour embryonnaire 16 (e16) dû à une déficience en érythrocytes matures. L'objectif principal de cette thèse est de caractériser le rôle moléculaire de Lhx2 dans le développement des yeux et du cortex cérébral. Lhx2 fait partie des facteurs de transcription à homéodomaine exprimé dans la portion antérieure de la plaque neurale avec Rx, Pax6, Six3. Le développement de l'oeil débute par une évagination bilatérale de cette région. Nous démontrons que l'expression de Lhx2 est cruciale pour les premières étapes de la formation de l'oeil. En effet, en absence de Lhx2, l'expression de Rx, Six3 et Pax6 est retardée dans la plaque neurale antérieure. Au stade de la formation de la vésicule optique, l'absence de Lhx2 empêche l'activation de Six6 (un facteur de transcription également essentiel au développement de l'œil). Nous démontrons que Lhx2 et Pax6 coopèrent en s'associant au promoteur de Six6 afin de promouvoir sa trans-activation. Donc, Lhx2 est un gène essentiel pour la détermination de l'identité rétinienne au niveau de la plaque neurale. Plus tard, il collabore avec Pax6 pour établir l'identité rétinienne définitive et promouvoir la prolifération cellulaire. De plus, Lhx2 est fortement exprimé dans le télencéphale, région qui donnera naissance au cortex cérébral. L'absence de Lhx2 entraîne une diminution de la prolifération des cellules progénitrices neurales dans cette région à e12.5. Nous démontrons qu'en absence de Lhx2, les cellules progénitrices neurales (cellules de glie radiale) se différencient prématurément en cellules progénitrices intermédiaires et en neurones post-mitotiques. Ces phénotypes sont corrélés à une baisse d'activité de la voie Notch. En absence de Lhx2, DNER (un ligand atypique de la voie Notch) est fortement surexprimé dans le télencéphale. De plus, Lhx2 et des co-répresseurs s'associent à la chromatine de la région promotrice de DNER. Nous concluons que Lhx2 permet l'activation de la voie Notch dans le cortex cérébral en développement en inhibant la transcription de DNER, qui est un inhibiteur de la voie Notch dans ce contexte particulier. Lhx2 permet ainsi la maintenance et la prolifération des cellules progénitrices neurales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La neuropathie humaine sensitive et autonome de type 2 (NHSA 2) est une pathologie héréditaire rare caractérisée par une apparition précoce des symptômes et une absence d’affectation motrice. Cette pathologie entraîne la perte de perception de la douleur, de la chaleur et du froid ainsi que de la pression (toucher) dans les membres supérieurs et inférieurs et est due à des mutations autosomales récessives confinées à l’exon HSN2 de la protéine kinase à sérine/thréonine WNK1 (with-no-lysine protein kinase 1). Cet exon spécifique permettrait de conférer une spécificité au système nerveux à l’isoforme protéique WNK1/HSN2. La kinase WNK1 est étudiée en détails, en particulier au niveau du rein, mais son rôle au sein du système nerveux demeure inconnu. Considérant le début précoce de la neuropathie et le manque d’innervation sensorielle révélé par des biopsies chez les patients NHSA2, notre hypothèse de recherche est que les mutations tronquantes menant à la NHSA de type 2 causent une perte de fonction de l’isoforme WNK1/HSN2 spécifique au système nerveux entraînant un défaut dans le développement du système nerveux sensoriel périphérique. Chez l’embryon du poisson zèbre, WNK1/HSN2 est exprimé au niveau des neuromastes de la ligne latérale postérieure, un système mécanosensoriel périphérique. Nous avons obtenu des embryons knockdown pour WNK1/HSN2 par usage d’oligonucléotides morpholino antisens (AMO). Nos trois approches AMO ont révélé des embryons présentant des défauts d’établissement au niveau de la ligne latérale postérieure. Afin de déterminer la voie pathogène impliquant l’isoforme WNK1/HSN2, nous nous sommes intéressés à l’interaction rapportée entre la kinase WNK1 et le co-transporteur neuronal KCC2. Ce dernier est une cible de phosphorylation de WNK1 et son rôle dans la promotion de la neurogenèse est bien connu. Nous avons détecté l’expression de KCC2 au niveau de neuromastes de la ligne latérale postérieure et observé une expression accrue de KCC2 chez les embryons knockdown pour WNK1/HSN2 à l’aide de RT-PCR semi-quantitative. De plus, une sur-expression d’ARN humain de KCC2 chez des embryons a produit des défauts dans la ligne latérale postérieure, phénocopiant le knockdown de WNK1/HSN2. Ces résultats furent validés par un double knockdown, produisant des embryons n’exprimant ni KCC2, ni WNK1/HSN2, dont le phénotype fut atténué. Ces résultats nous mènent à suggérer une voie de signalisation où WNK1/HSN2 est en amont de KCC2, régulant son activation, et possiblement son expression. Nous proposons donc que la perte de fonction de l’isoforme spécifique cause un débalancement dans les niveaux de KCC2 activée, menant à une prolifération et une différenciation réduites des progéniteurs neuronaux du système nerveux périphérique. Les défauts associés à la NHSA de type 2 seraient donc de nature développementale et non neurodégénérative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les patients atteints de cancers reçoivent différents traitement, tels que la radiothérapie ou la chimiothérapie. Actuellement, environ 60% des enfants survivants du cancer développent des effets secondaires cognitifs, consécutifs aux traitements énoncés précédemment. Compte tenu de la perspective du développement psychomoteur de l’enfant et de l’immaturité du système nerveux central (SNC) chez ces patients, il s’avère particulièrement pertinent d’étudier les effets secondaires que provoquent les traitements anticancéreux sur le développement cognitif de cette population de malades. Des études ont démontrées l’existence de liens étroits entre ces effets secondaires et l’abolition de la neurogénèse provoquée principalement par l’irradiation. Ce projet de maîtrise porte sur les effets du facteur de croissance épidermique, l’EGF (un facteur de croissance impliqué dans la prolifération cellulaire) sur la neurogénèse de la souris. Nous avons également cherché un vecteur de sécrétion efficace pour permettre une diffusion continue d’EGF à long terme (2 à 4 semaines). Notre hypothèse est que l’EGF serait capable de stimuler la neurogénèse et protéger les cellules de l’apoptose dans le cerveau de la souris, suite à une irradiation. Nous avons montré un effet positif de l’EGF sur la formation et la prolifération des neuroblastes Dcx(+) dans la zone sous ventriculaire (ZSV) et non dans l’hippocampe (Hi), suite à l’injection de l’EGF, directement dans le cerveau à l’aide d’une pompe osmotique. Nous avons observé que cette augmentation de la quantité de jeunes neurones est indépendante de la capacité de l’EGF à les protéger de l’apoptose. L’EGF ne protège pas non plus les blastes leucémiques, issus de lignées de cellules humaines, des effets secondaires d’une irradiation. Les cellules souches mésenchymateuses (CSM) modifiées génétiquement et générées pour sécréter l’EGF ne montrent aucun effet sur la stimulation de la neurogénèse quand elles sont directement injectées dans le cerveau. Finalement, nos résultats indiquent que l’EGF pourrait être un bon candidat pour le développement de nouvelles thérapies pour traiter les effets secondaires que provoque une irradiation du cerveau. L’utilisation de pompes pour permettre l’administration d’EGF dans le cerveau devient alors très intéressante pour améliorer la qualité de vie des patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il est reconnu que la protéine filamenteuse intermédiaire Nestine est exprimée lors du processus de cicatrisation et du remodelage fibrotique. De plus, nous avons identifié l’expression de la Nestine au sein de deux populations distinctes qui sont directement impliquées dans les réponses de fibroses réparative et réactive. Ainsi, une population de cellules souches neurales progénitrices résidentes du coeur de rat adulte exprime la Nestine et a été identifiée à titre de substrat de l’angiogenèse et de la neurogenèse cardiaque. Également, la Nestine est exprimée par les myofibroblastes cicatriciels cardiaques et il a été établi que la protéine filamenteuse intermédiaire joue un rôle dans la prolifération de ces cellules. Ainsi, l’objectif général de cette thèse était de mieux comprendre les évènements cellulaires impliqués dans la réponse neurogénique des cellules souches neurales progénitrices résidentes cardiaques Nestine(+) (CSNPRCN(+)) lors de la fibrose réparative cardiaque et d’explorer si l’apparition de fibroblastes Nestine(+) est associée avec la réponse de fibrose réactive secondaire du remodelage pulmonaire. Une première publication nous a permis d’établir qu’il existe une régulation à la hausse de l’expression de la GAP43 (growth associated protein 43) et que cet événement transitoire précède l’acquisition d’un phénotype neuronal par les CSNPRCN(+) lors du processus de cicatrisation cardiaque chez le rat ayant subi un infarctus du myocarde. De plus, la surimposition de la condition diabétique de type 1, via l’injection unique de Streptozotocine chez le rat, abolit la réponse neurogénique des CSNPRCN(+), qui est normalement induite à la suite de l’ischémie cardiaque ou de l’administration de 6-hydroxydopamine. Le second article a démontré que le développement aigu de la fibrose pulmonaire secondaire de l’infarctus du myocarde chez le rat est associé avec une augmentation de l’expression protéique de la Nestine et de l’apparition de myofibroblastes pulmonaires Nestine(+). Également, le traitement de fibroblastes pulmonaires avec des facteurs de croissances peptidiques pro-fibrotiques a augmenté l’expression de la Nestine par ces cellules. Enfin, le développement initial de la condition diabétique de type 1 chez le rat est associé avec une absence de fibrose réactive pulmonaire et à une réduction significative des niveaux protéiques et d’ARN messager de la Nestine pulmonaire. Finalement, la troisième étude représentait quant à elle un prolongement de la deuxième étude et a alors examiné le remodelage pulmonaire chronique chez un modèle établi d’hypertension pulmonaire. Ainsi, les poumons de rats adultes mâles soumis à l’hypoxie hypobarique durant 3 semaines présentent un remodelage vasculaire, une fibrose réactive et une augmentation des niveaux d’ARN messager et de la protéine Nestine. De plus, nos résultats ont démontré que la Nestine, plutôt que l’alpha-actine du muscle lisse, est un marqueur plus approprié des diverses populations de fibroblastes pulmonaires activés. Également, nos données suggèrent que les fibroblastes pulmonaires activés proviendraient en partie de fibroblastes résidents, ainsi que des processus de transition épithélio-mésenchymateuse et de transition endothélio-mésenchymateuse. Collectivement, ces études ont démontré que des populations distinctes de cellules Nestine(+) jouent un rôle majeur dans la fibrose réparative cardiaque et la fibrose réactive pulmonaire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

À la fin du 19e siècle, Dr. Ramón y Cajal, un pionnier scientifique, a découvert les éléments cellulaires individuels, appelés neurones, composant le système nerveux. Il a également remarqué la complexité de ce système et a mentionné l’impossibilité de ces nouveaux neurones à être intégrés dans le système nerveux adulte. Une de ses citations reconnues : “Dans les centres adultes, les chemins nerveux sont fixes, terminés, immuables. Tout doit mourir, rien ne peut être régénérer” est représentative du dogme de l’époque (Ramón y Cajal 1928). D’importantes études effectuées dans les années 1960-1970 suggèrent un point de vue différent. Il a été démontré que les nouveaux neurones peuvent être générés à l’âge adulte, mais cette découverte a créé un scepticisme omniprésent au sein de la communauté scientifique. Il a fallu 30 ans pour que le concept de neurogenèse adulte soit largement accepté. Cette découverte, en plus de nombreuses avancées techniques, a ouvert la porte à de nouvelles cibles thérapeutiques potentielles pour les maladies neurodégénératives. Les cellules souches neurales (CSNs) adultes résident principalement dans deux niches du cerveau : la zone sous-ventriculaire des ventricules latéraux et le gyrus dentelé de l’hippocampe. En condition physiologique, le niveau de neurogenèse est relativement élevé dans la zone sous-ventriculaire contrairement à l’hippocampe où certaines étapes sont limitantes. En revanche, la moelle épinière est plutôt définie comme un environnement en quiescence. Une des principales questions qui a été soulevée suite à ces découvertes est : comment peut-on activer les CSNs adultes afin d’augmenter les niveaux de neurogenèse ? Dans l’hippocampe, la capacité de l’environnement enrichi (incluant la stimulation cognitive, l’exercice et les interactions sociales) à promouvoir la neurogenèse hippocampale a déjà été démontrée. La plasticité de cette région est importante, car elle peut jouer un rôle clé dans la récupération de déficits au niveau de la mémoire et l’apprentissage. Dans la moelle épinière, des études effectuées in vitro ont démontré que les cellules épendymaires situées autour du canal central ont des capacités d’auto-renouvellement et de multipotence (neurones, astrocytes, oligodendrocytes). Il est intéressant de noter qu’in vivo, suite à une lésion de la moelle épinière, les cellules épendymaires sont activées, peuvent s’auto-renouveller, mais peuvent seulement ii donner naissance à des cellules de type gliale (astrocytes et oligodendrocytes). Cette nouvelle fonction post-lésion démontre que la plasticité est encore possible dans un environnement en quiescence et peut être exploité afin de développer des stratégies de réparation endogènes dans la moelle épinière. Les CSNs adultes jouent un rôle important dans le maintien des fonctions physiologiques du cerveau sain et dans la réparation neuronale suite à une lésion. Cependant, il y a peu de données sur les mécanismes qui permettent l'activation des CSNs en quiescence permettant de maintenir ces fonctions. L'objectif général est d'élucider les mécanismes sous-jacents à l'activation des CSNs dans le système nerveux central adulte. Pour répondre à cet objectif, nous avons mis en place deux approches complémentaires chez les souris adultes : 1) L'activation des CSNs hippocampales par l'environnement enrichi (EE) et 2) l'activation des CSNs de la moelle épinière par la neuroinflammation suite à une lésion. De plus, 3) afin d’obtenir plus d’information sur les mécanismes moléculaires de ces modèles, nous utiliserons des approches transcriptomiques afin d’ouvrir de nouvelles perspectives. Le premier projet consiste à établir de nouveaux mécanismes cellulaires et moléculaires à travers lesquels l’environnement enrichi module la plasticité du cerveau adulte. Nous avons tout d’abord évalué la contribution de chacune des composantes de l’environnement enrichi à la neurogenèse hippocampale (Chapitre II). L’exercice volontaire promeut la neurogenèse, tandis que le contexte social augmente l’activation neuronale. Par la suite, nous avons déterminé l’effet de ces composantes sur les performances comportementales et sur le transcriptome à l’aide d’un labyrinthe radial à huit bras afin d’évaluer la mémoire spatiale et un test de reconnaissante d’objets nouveaux ainsi qu’un RNA-Seq, respectivement (Chapitre III). Les coureurs ont démontré une mémoire spatiale de rappel à court-terme plus forte, tandis que les souris exposées aux interactions sociales ont eu une plus grande flexibilité cognitive à abandonner leurs anciens souvenirs. Étonnamment, l’analyse du RNA-Seq a permis d’identifier des différences claires dans l’expression des transcripts entre les coureurs de courte et longue distance, en plus des souris sociales (dans l’environnement complexe). iii Le second projet consiste à découvrir comment les cellules épendymaires acquièrent les propriétés des CSNs in vitro ou la multipotence suite aux lésions in vivo (Chapitre IV). Une analyse du RNA-Seq a révélé que le transforming growth factor-β1 (TGF-β1) agit comme un régulateur, en amont des changements significatifs suite à une lésion de la moelle épinière. Nous avons alors confirmé la présence de cette cytokine suite à la lésion et caractérisé son rôle sur la prolifération, différentiation, et survie des cellules initiatrices de neurosphères de la moelle épinière. Nos résultats suggèrent que TGF-β1 régule l’acquisition et l’expression des propriétés de cellules souches sur les cellules épendymaires provenant de la moelle épinière.